Showing posts with label Bulk Material Handling. Show all posts
Showing posts with label Bulk Material Handling. Show all posts

Wednesday, November 8, 2017

Biomass for Power and Heat Generation

There are many potential advantages to using biomass instead of fossil fuels for meeting energy needs. Specific benefits depend upon the intended use and fuel source, but often include: greenhouse gas and other air pollutant reductions, energy cost savings, local economic development, waste reduction, and the security of a domestic fuel supply. In addition, biomass is more flexible (e.g., can generate both power and heat) and reliable (as a non-intermittent resource) as an energy option than many other sources of renewable energy.

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through CHP (combined heat and power). CHP, also known as cogeneration, is the simultaneous production of electricity and heat from a single fuel source, such as biomass/biogas, natural gas, coal, or oil. CHP provides:
  • Distributed generation of electrical and/or mechanical power.
  • Waste-heat recovery for heating, cooling, or process applications.
  • Seamless system integration for a variety of technologies, thermal applications, and fuel types into existing building infrastructure.
CHP is not a single technology, but an integrated energy system that can be modified depending on the needs of the energy end user. The hallmark of all well-designed CHP systems is an increase in the efficiency of fuel use. By using waste heat recovery technology to capture a significant proportion of heat created as a byproduct in electricity generation, CHP systems typically achieve total system efficiencies of 60 to 80 percent for producing electricity and thermal energy. These efficiency gains improve the economics of using biomass fuels, as well as produce other environmental benefits. More than 60 percent of current biomass-powered electricity generation in the United States is in the form of CHP.

The industrial sector currently produces both steam or hot water and electricity from biomass in CHP facilities in the paper, chemical, wood products, and food-processing industries. These industries are major users of biomass fuels; utilizing the heat and steam in their processes can improve energy efficiency by more than 35 percent. The biggest industrial user of bioenergy is the forest products industry, which consumes 85 percent of all wood waste used for energy in the United States. Manufacturing plants that utilize forest products can typically generate more than half of their own energy from woody waste products and other renewable sources of fuel (e.g., wood chips, black liquor).

Most of the electricity, heat, and steam produced by industrial facilities are consumed on site; however, some manufacturers that produce more electricity than they need on site sell excess power to the grid. Wider use of biomass resources will directly benefit many companies that generate more residues (e.g., wood or processing wastes) than they can use internally. New markets for these excess materials may support business expansion as the residues are purchased for energy generation purposes or new profit centers of renewable energy production may diversify and support the core business of these companies.

Biomass Feedstocks

The success of any biomass-fueled CHP project is heavily dependent on the availability of a suitable biomass feedstock. Biomass feedstocks are widely available in both rural and urban settings and can include:

Rural Resources:
  • Forest residues and wood wastes
  • Crop residues Energy crops Manure biogas
Urban Resources:
  • Urban wood waste
  • Wastewater treatment biogas
  • Municipal solid waste (MSW) and landfill gas (LFG)
  • Food processing residue
Feedstocks vary widely in their sources and fuel characteristics and therefore vary in typical considerations for their utilization. Various biomass resources can require different approaches to collection, storage, and transportation, as well as different considerations regarding the conversion process and power generation technology that they would most effectively fuel.

Process Systems & Design welcomes your inquiries in to biomass processing. With years of engineering experience in this field, PS&D is an outstanding engineering partner for any biomass-to-energy conversion process.

Contact Process Systems & Design by visiting http://www.processsystemsdesign.com or call (410) 861-6437.

Tuesday, September 5, 2017

Portland Cement Manufacturing

Bulk dry material handling
Cement plant.
Portland cement is a fine powder, gray or white in color, that consists of a mixture of hydraulic cement materials comprising primarily calcium silicates. More than 30 raw materials are known to be used in the manufacture of portland cement, and these materials can be divided into four distinct categories: calcareous, siliceous, argillaceous, and ferrifrous. These materials are chemically combined via pyroprocessing and subjected to subsequent mechanical processing operations to form gray and white portland cement. Gray portland cement is used for structural applications and is the more common type of cement produced. White portland cement has lower iron and manganese contents than gray portland cement and is used primarily for decorative purposes.

Portland cement, which consists of a mixture of the hydraulic cement minerals, calcium silicates, aluminates and aluminoferrites, and calcium sulfates, accounts for 95 percent of the hydraulic cement production in the United States. The balance of domestic cement production comprises primarily masonry cement. Both of these materials are produced in portland cement manufacturing plants.

The production of both portland and masonry cement can be divided into the following primary components: 
  • Raw materials acquisition and handling
  • Kiln feed preparation
  • Pyroprocessing
  • Finished cement grinding


Raw Materials Acquisition and Handling

Typically, these raw materials are obtained from open-face quarries, but underground mines or dredging operations are also used. Raw materials vary from facility to facility. The materials found in some quarries that supply raw materials for portland cement have a high degree of calcinated limestone, whereas the material from other limestone quarries must be blended with "cleaner" limestone to produce an acceptable product. In addition, pockets of pyrite, which significantly increase emissions of sulfur dioxide (SO2), can be found in deposits of limestone, clays, and shales used as raw materials for portland cement. Because a large fraction (approximately one third) of the mass of this primary material is converted to carbon dioxide (CO2) in the kiln, portland cement plants are located in close proximity to a raw material source whenever possible. Other metallic elements included in the raw feed mix are silicon, aluminum, and iron. These materials are obtained from ores and minerals such as sand, shale, clay, and iron ore. Again, these materials are most commonly extracted via open-pit quarries or mines, but they may be dredged or excavated from underwater deposits.

Either gypsum or natural anhydrite, both of which are forms of calcium sulfate, is introduced to the process during the finish grinding operations described below. These materials are also excavated from quarries or mines. However, they are generally purchased from an external source, rather than obtained directly from a captive operation by the cement plant. In addition, the portland cement manufacturing industry is relying increasingly on replacing virgin materials as described above with waste materials or byproducts from other manufacturing operations, to the extent that such replacement can be implemented without adversely affecting plant operations or product quality. Materials that have been used include fly ash, mill scale, and metal smelting slags.


Kiln Feed Preparation

The second step in portland cement manufacture is preparing the raw mix or kiln feed for the pyroprocessing operation. Raw material preparation includes a variety of blending and sizing operations that are designed to provide a feed with appropriate chemical and physical properties. The raw material processing operations differ somewhat for wet and dry processes, as described in the paragraphs below.

Cement raw materials are received with an initial moisture content varying from 1 to more than 50 percent. If the facility uses dry process kilns, this moisture is usually reduced to less than 1 percent before or during grinding. Drying alone can be accomplished in impact dryers, drum dryers, paddle- equipped rapid dryers, air separators, or autogenous mills. However, drying can also be accomplished during grinding in ball-and-tube mills or roller mills. While thermal energy for drying can be supplied by exhaust gases from separate, direct-fired coal, oil, or gas burners, the most efficient and widely used source of heat for drying is the hot exit gases from the pyroprocessing system.

Materials transport associated with raw milling systems can be accomplished by a variety of mechanisms, including screw conveyors, belt conveyors, drag conveyors, bucket elevators, air slide conveyors, and pneumatic conveying systems. The dry raw mix is pneumatically blended and stored in specially constructed silos until it is fed to the pyroprocessing system.

In the wet process, water is added to the raw mill during the grinding of the raw materials in ball or tube mills, thereby producing a pumpable slip or slurry of approximately 65 percent solids. The slurry is agitated, blended, and stored in various kinds and sizes of cylindrical tanks or slurry basins until it is fed to the pyroprocessing system.

Pyroprocessing

The heart of the portland cement manufacturing process is the pyroprocessing system. This system transforms the raw mix into clinkers, which are gray, glass-hard, spherically shaped nodules that range from 0.32 to 5.1 centimeters (cm) (0.125 to 2.0 inches [in.]) in diameter. The chemical reactions and physical processes that constitute the transformation are quite complex, but they can be viewed conceptually as the following sequential events:
  1. Evaporation of free water; 
  2. Evolution of combined water in the argillaceous components; 
  3. Calcination of the calcium carbonate (CaCO3) to calcium oxide (CaO); 
  4. Reaction of CaO with silica to form dicalcium silicate; 
  5. Reaction of CaO with the aluminum and iron-bearing constituents to form the liquid phase; 
  6. Formation of the clinker nodules; 
  7. Evaporation of volatile constituents (e.g., sodium, potassium, chlorides, and sulfates); and 
  8. Reaction of excess CaO with dicalcium silicate to form tricalcium silicate. 
This sequence of events may be conveniently divided into four stages, as a function of location and temperature of the materials in the rotary kiln.
  1. Evaporation of uncombined water from raw materials as material temperature increases to 100 deg. C (212 deg. F); 
  2. Dehydration as the material temperature increases from 100 deg. C to approximately 430 deg. C (800 deg. F) to form oxides of silicon, aluminum, and iron; 
  3. Calcination, during which carbon dioxide (CO2) is evolved, between 900 deg. C (1650 deg. F) and 982 deg. C (1800 deg. F), to form CaO; and 
  4. Reaction of the oxides in the burning zone of the rotary kiln to form cement clinker at temperatures of approximately 1510 deg. C (2750 deg. F). 
Rotary kilns are long, cylindrical, slightly inclined furnaces that are lined with refractory to protect the steel shell and retain heat within the kiln. The raw material mix enters the kiln at the elevated end, and the combustion fuels generally are introduced into the lower end of the kiln in a countercurrent manner. The materials are continuously and slowly moved to the lower end by rotation of the kiln. As they move down the kiln, the raw materials are changed to cementitious metal oxides by the direct heat exchange. The most commonly used kiln fuels are coal, natural gas, and occasionally oil. Many cement plants currently burn coal, but use of supplemental fuels such as waste solvents, scrap rubber, and petroleum coke has expanded in recent years.

Five different processes are used in the portland cement industry to accomplish the pyroprocessing step: the wet process, the dry process (long dry process), the semidry process, the dry process with a preheater, and the dry process with a preheater/precalciner. Each of these processes accomplishes the physical/chemical steps defined above. However, the processes vary with respect to equipment design, method of operation, and fuel consumption. Generally, fuel consumption decreases in the order of the processes listed above. The paragraphs below briefly describe the process, starting with the wet process and then noting differences in the other processes.

In the wet process and long dry process, all of the pyroprocessing activity occurs in the rotary kiln. Depending on the process type, kilns have length-to-diameter ratios in the range of 15:1 to 40:1. While some wet process kilns may be as long as 210 m (700 ft), many wet process kilns and all dry process kilns are shorter. Wet process and long dry process pyroprocessing systems consist solely of the simple rotary kiln. Usually, a system of chains is provided at the feed end of the kiln in the drying or preheat zones to improve heat transfer from the hot gases to the solid materials. As the kiln rotates, the chains are raised and exposed to the hot gases. Further kiln rotation causes the hot chains to fall into the cooler materials at the bottom of the kiln, thereby transferring the heat to the load.

Dry process pyroprocessing systems have been improved in thermal efficiency and productive capacity through the addition of one or more cyclone-type preheater vessels in the gas stream after the rotary kiln. This system is called the preheater process. The vessels are arranged vertically, in series, and are supported by a structure known as the preheater tower. Hot exhaust gases from the rotary kiln pass countercurrently through the downward-moving raw materials in the preheater vessels. Compared with the simple rotary kiln, the heat transfer rate is significantly increased, the degree of heat utilization is more complete, and the process time is markedly reduced owing to the intimate contact of the solid particles with the hot gases. The improved heat transfer allows the length of the rotary kiln to be reduced. The hot gases from the preheater tower are often used as a source of heat for drying raw materials in the raw mill. Because the catch from the mechanical collectors, fabric filters, and/or electrostatic precipitators (ESP's) that follow the raw mill is returned to the process, these devices are considered to be production machines as well as pollution control devices.

Additional thermal efficiencies and productivity gains have been achieved by diverting some fuel to a calciner vessel at the base of the preheater tower. This system is called the preheater/precalciner process. While a substantial amount of fuel is used in the precalciner, at least 40 percent of the thermal energy is required in the rotary kiln. The amount of fuel that is introduced to the calciner is determined by the availability and source of the oxygen for combustion in the calciner. Calciner systems sometimes use lower-quality fuels (e.g., less-volatile matter) as a means of improving process economics.

Preheater and precalciner kiln systems often have a bypass system between the feed end of the rotary kiln and the preheater tower to remove the undesirable volatile constituents. Otherwise, the volatile constituents condense in the preheater tower and subsequently recirculate to the kiln. Buildup of these condensed materials can restrict process and gas flows. In a bypass system, a portion of the kiln exit gas stream is withdrawn and quickly cooled by air or water to condense the volatile constituents to fine particles. The solid particles, which are removed from the gas stream by fabric filters and ESP's, are then returned to the process.

The semidry process is a variation of the dry process. In the semidry process, the water is added to the dry raw mix in a pelletizer to form moist nodules or pellets. The pellets then are conveyed on a moving grate preheater before being fed to the rotary kiln. The pellets are dried and partially calcined on the moving grate through which hot kiln exhaust gases pass.

Regardless of the type of pyroprocess used, the last component of the pyroprocessing system is the clinker cooler. This process step recoups up to 30 percent of the heat input to the kiln system, locks in desirable product qualities by freezing mineralogy, and makes it possible to handle the cooled clinker with conventional conveying equipment. The more common types of clinker coolers are (1) reciprocating grate, (2) planetary, and (3) rotary. In these coolers, the clinker is cooled from about 1100 deg. C to 93 deg. C (2000 deg. F to 200 deg. F) by ambient air that passes through the clinker and into the rotary kiln for use as combustion air. However, in the reciprocating grate cooler, lower clinker discharge temperatures are achieved by passing an additional quantity of air through the clinker. Because this additional air cannot be utilized in the kiln for efficient combustion, it is vented to the atmosphere, used for drying coal or raw materials, or used as a combustion air source for the precalciner.


Finished Cement Grinding

The final step in portland cement manufacturing involves a sequence of blending and grinding operations that transforms clinker to finished portland cement. Up to 5 percent gypsum or natural anhydrite is added to the clinker during grinding to control the cement setting time, and other specialty chemicals are added as needed to impart specific product properties. This finish milling is accomplished almost exclusively in ball or tube mills. Typically, finishing is conducted in a closed- circuit system with product sizing via air separation.

Process Systems & Design are dry bulk material handling experts and can assist you in any sand, gravel, cement, or concrete handling requirement. Contact them at (410) 861-6437 or visit their website at http://www.processsystemsdesign.com.

Wednesday, August 23, 2017

Sand and Gravel Processing

Sand and Gravel Processing
Sand and Gravel Processing
Deposits of sand and gravel, the unconsolidated granular materials resulting from the natural disintegration of rock or stone, are generally found in near-surface alluvial deposits and in subterranean and subaqueous beds. Sand and gravel are siliceous and calcareous products of the weathering of rocks and unconsolidated or poorly consolidated materials. Such deposits are common throughout the country.






Construction Sand and Gravel

Sand and gravel typically are mined in a moist or wet condition by open pit excavation or by dredging. 


Open pit excavation is carried out with power shovels, draglines, front end loaders, and bucket wheel excavators. In rare situations, light charge blasting is done to loosen the deposit. Mining by dredging involves mounting the equipment on boats or barges and removing the sand and gravel from the bottom of the body of water by suction or bucket-type dredges. After mining, the materials are transported to the processing plant by suction pump, earth mover, barge, truck, belt conveyors, or other means.

Although significant amounts of sand and gravel are used for fill, bedding, subbase, and basecourse without processing, most domestic sand and gravel are processed prior to use. The processing of sand and gravel for a specific market involves the use of different combinations of washers, screens, and classifiers to segregate particle sizes; crushers to reduce oversized material; and storage and loading facilities.

After being transported to the processing plant, the wet sand and gravel raw feed is stockpiled or emptied directly into a hopper, which typically is covered with a "grizzly" of parallel bars to screen out large cobbles and boulders. From the hopper, the material is transported to fixed or vibrating scalping screens by gravity, belt conveyors, hydraulic pump, or bucket elevators. The scalping screens separate the oversize material from the smaller, marketable sizes. Oversize material may be used for erosion control, reclamation, or other uses, or it may be directed to a crusher for size reduction, to produce crushed aggregate, or to produce manufactured sands. Crushing generally is carried out in one or two stages, although three-stage crushing may also be performed. Following crushing, the material is returned to the screening operation for sizing.

The material that passes through the scalping screen is fed into a battery of sizing screens, which generally consists of either horizontal or sloped, and either single or multideck, vibrating
screens. Rotating trommel screens with water sprays are also used to process and wash wet sand and gravel. Screening separates the sand and gravel into different size ranges. Water is sprayed onto the material throughout the screening process. After screening, the sized gravel is transported to stockpiles, storage bins, or, in some cases, to crushers by belt conveyors, bucket elevators, or screw conveyors.

The sand is freed from clay and organic impurities by log washers or rotary scrubbers. After scrubbing, the sand typically is sized by water classification. Wet and dry screening is rarely used to size the sand. After classification, the sand is dewatered using screws, separatory cones, or hydroseparators. Material may also be rodmilled to produce smaller sized fractions, although this practice is not common in the industry. After processing, the sand is transported to storage bins or stockpiles by belt conveyors, bucket elevators, or screw conveyors.


Industrial Sand and Gravel

Industrial sand and gravel typically are mined from open pits of naturally occurring quartz-rich sand and sandstone. 


Mining methods depend primarily on the degree of cementation of the rock. In some deposits, blasting is required to loosen the material prior to processing. The material may undergo primary crushing at the mine site before being transported to the processing plant.

The mined rock is transported to the processing site and stockpiled. The material then is crushed. Depending on the degree of cementation, several stages of crushing may be required to achieve the desired size reduction. Gyratory crushers, jaw crushers, roll crushers, and impact mills are used for primary and secondary crushing. After crushing, the size of the material is further reduced to 50 micrometers or smaller by grinding, using smooth rolls, media mills, autogenous mills, hammer mills, or jet mills. The ground material then is classified by wet screening, dry screening, or air classification. At some plants, after initial crushing and screening, a portion of the sand may be diverted to construction sand use.

After initial crushing and screening, industrial sand and gravel are washed to remove unwanted dust and debris and are then screened and classified again. The sand (now containing 25 to 30 percent moisture) or gravel then goes to an attrition scrubbing system that removes surface stains from the material by rubbing in an agitated, high-density pulp. The scrubbed sand or gravel is diluted with water to 25 to 30 percent solids and is pumped to a set of cyclones for further desliming. If the deslimed sand or gravel contains mica, feldspar, and iron bearing minerals, it enters a froth flotation process to which sodium silicate and sulfuric acid are added. The mixture then enters a series of spiral classifiers where the impurities are floated in a froth and diverted to waste. The purified sand, which has a moisture content of 15 to 25 percent, is conveyed to drainage bins where the moisture content is reduced to about 6 percent. The material is then dried in rotary or fluidized bed dryers to a moisture content of less than 0.5 percent. The dryers generally are fired with natural gas or oil, although other fuels such as propane or diesel also may be used. After drying, the material is cooled and then undergoes final screening and classification prior to being stored and packaged for shipment.

Process Systems & Design are experts in the processing of sand and gravel. Visit http://www.processsystemsdesign.com or call (410) 861-6437 with any inquiries or questions you may have.

Thursday, August 17, 2017

Safe, Efficient, and Clean Operation of Belt Conveyors

Belt conveyors are among the most commonly used piece of equipment at mineral processing operations. A conveyor, and the associated transfer points, can generate significant quantities of hazardous debris and respirable dust. Operations must control these emissions by containing, suppressing, or collecting the dust and debris mechanically, either before or after it spills or becomes airborne, giving special attention to transfer points.

A conveyor belt consists of many different parts as seen in Figure 1.


Figure 1 - Basic components of a conveyor belt. 
There are three primary root causes for hazardous debris or fugitive dust emissions associated with conveyor belts: spillage, carryback, and airborne dust (Figure 2). Control of all three primary dust sources is necessary to eliminate hazardous debris and fugitive dust emissions.

Fig. 2 - Types of fugitive dust emissions and debris from conveyor belts 
Controlling Material Spillage

Material spillage from a conveyor belt is caused by a lack of material control, either at a transfer point or along the transfer route. Spillage along the transfer route is generally associated with carryback.

Carryback

Material that sticks or clings to a conveyor belt after passing over the head pulley is called carryback. Carryback tends to fall from the belt as it passes over return idlers. This creates piles of material that require clean-up, which can increase worker dust exposure. Also, respirable portions of carryback can become airborne and increase fugitive dust exposure levels. The goal is to remove carryback before it is released into the air and becomes a source of contamination to the workers or creates piles of material that require clean-up.

The primary means of controlling carryback is to clean the belt as it passes over or past the head pulley (i.e. shortly after material is discharged from the belt). The two most common means of cleaning a conveyor belt of carryback are to mechanically "scrape" the belt via scrapers or brushes or to wash the belt.

Water Sprays for Prevention of Airborne Dust

Wet spray systems, the use of water to control dust, may be classified into prevention applications and suppression applications. When properly designed and installed, water sprays are a cost-effective method of controlling dust from conveyors. The most common and effective practice for conveyor sprays is to wet the entire width of product on the belt.

To discuss this topic in greater detail, contact the experts at Process Systems & Design. They'll be happy to share their decades of experience and knowledge with you.

www.processsytems.com
info@processsystemsdesign.com
(410) 861-6437

Saturday, July 22, 2017

Thursday, June 8, 2017

Dilute Phase Pneumatic Conveying

Dilute Phase Pneumatic Conveying
Dilute Phase Pneumatic Conveying
One of the most popular methods of moving solids in the chemical industry is pneumatic conveying. Pneumatic conveying refers to the moving of solids suspended in or forced by a gas stream through horizontal and/or vertical pipes. Pneumatic conveying can be used for particles ranging from fine powders to pellets and bulk densities of 16 to 3200 kg/m3 (1 to 200 lb/ft3).

Considering designing a pneumatic conveying system yourself? Probably not a good idea. There's as much art involved as there is science and such a design should be left to professionals. Consider that even different grades of the same material have been known to convey differently. Testing is a must (as you'll see from the method below). Before you can even make any good judgements from the method presented here, you need to know solid friction factor for your solids (which we'll discuss later) and the minimum gas velocity required to move your particles. So, if you're involved in designing a system from the ground up, seek assistance from reputable people in the field of conveying. If you're already familiar with your solids, the method below can be used to examine the pressure loss expected in your system. The method presented here is very good and has been stood the test of real systems over time.

Read the full white paper (courtesy of Process Systems & Design) below:

Thursday, June 1, 2017

Piping & Instrumentation Diagram in Process Control

Process and Control Flow Diagrams
P&ID's (piping & instrumentation diagrams), or Process and Control Flow Diagrams, are schematic representations of a process control system and used to illustrate the piping system, process flow, installed equipment, and process instrumentation and functional relationships therein.

Intended to provide a “picture” of all of piping including the physical branches, valves, equipment, instrumentation and interlocks. The P&ID uses a set of standard symbols representing each component of the system such as instruments, piping, motors, pumps, etc.

P&ID’s can be very detailed and are generally the primary source from where instrument and equipment lists are generated and are very handy reference for maintenance and upgrades. P&ID’s also play an important early role in safety planning through a better understanding of the operability and relationships of all components in the system.


For more information on any process system design or process engineering requirement, visit http://www.processsytemsdesign.com or call (410) 861-6437.

Tuesday, May 2, 2017